<u>N30 – Intermolecular Forces</u>

Vapor Pressure & Phase Changes

<u>N30 – Intermolecular Forces</u>

Vapor Pressure & Phase Changes

Target: I can describe the connection between IMFs and vapor pressure, and can use heating curves and phase diagrams to determine information about how substances go through phase changes The pressure exerted by the vapor when it is in dynamic equilibrium with its liquid

Example: using Dalton's Law of Partial Pressures to account for the pressure of the water vapor when collecting gases by water displacement.

If there is some liquid present, then there is some vapor present!

Equilibrium Vapor Pressure

 $H_2O(I) \leftrightarrow H_2O(g)$

The pressure of the vapor present at equilibrium.

- Determined (mostly) by the strength of IMFs in the liquid.
- Increases significantly with temperature.

Volatile liquids have high vapor pressures.

Boiling Point

Temp at which vapor pressure = atmospheric pressure

Vapor Pressure

The weaker the attractive forces between the molecules, the more molecules will be in the vapor.

<u>WEAKER</u> attractive forces = <u>HIGHER</u> vapor pressure.

- The higher the vapor pressure, the more volatile the liquid.

Vapor-Liquid Dynamic Equilibrium

If you \uparrow Volume of chamber = \downarrow Pressure inside chamber

Then there are fewer vapor molecules in a given volume

Causing the rate of *condensation* to slow.

Therefore, for a period of time, the *rate of vaporization* will be faster than the rate of condensation,

Causing the amount of vapor to increase.

Vapor-Liquid Dynamic Equilibrium

Eventually enough vapor accumulates

Until the *rate of the condensation* increases to the point where it is once again as fast as evaporation.

Causing equilibrium to be reestablished!

Therefore the vapor pressure will be back to the original!

This time the equilibrium point will be the SAME as it started. Different than a "normal" eq. scenario where it goes back towards the original but never reaches it.

Phase Changes

Heating Curves

REVIEW THE HONORS CHEM MATERIAL!

Not going to cover it again...but it will show up on exams!

Phase Diagrams

Represents phases as a function of temperature <u>and pressure</u>.

Critical temperature: temperature above which the vapor can not be liquefied.

Critical pressure

Pressure required to liquefy <u>AT</u> the critical temperature.

Critical point

Critical temperature and pressure (for water, $T_c = 374^{\circ}$ C and 218 atm).

Triple Point

The point at which all three phases are present at the same time.

Do you notice how the slope between solid and liquid has a negative slope?

That is not common.

Its because the solid phase of water is less dense than the liquid.

This time the slope between solid and liquid is a positive slope.

More common.

Solid is more dense than the liquid.

Some substances have more phases than we are used to seeing because there might be different versions of the solid. Different crystal structures.

See how carbon can be diamond or graphite when solid?

At higher pressures it is diamond.

They get REALLY crazy!

YouTube Link to Presentation:

https://youtu.be/LTxUFe7jlV4

Can stop here! Different types of crystal structures are not covered anymore. You can keep going if interested though!

Some Properties of a Liquid

Surface Tension: The resistance to an increase in its surface area (polar molecules, liquid metals).

Capillary Action: Spontaneous rising of a liquid in a narrow tube.

Some Properties of a Liquid

Viscosity: Resistance to flow

High viscosity is an indication of <u>strong</u> intermolecular forces

Types of Solids

Crystalline Solids: highly regular arrangement of their components

Types of Solids

Amorphous solids: considerable disorder in their structures (glass).

Representation of Components in a Crystalline Solid

Lattice: A 3-dimensional system of points designating the centers of components (atoms, ions, or molecules) that make up the substance.

Simple

Face-Centered

Body-Centered

Crystal Structures - Monoclinic

Simple

End Face-Centered

Crystal Structures - Tetragonal

Simple

Body-Centered

Crystal Structures - Orthorhombic

End Face-Centered

Simple

Body Centered

Face Centered

Crystal Structures – Other Shapes

Rhombohedral Hexagonal

Triclinic

Packing in Metals

Packing uniform, hard spheres to best use available space. This is called closest packing. Each atom has 12 nearest neighbors.

Closest Packing Holes

Metal Alloys

Substitutional Alloy: some metal atoms replaced by others of similar size.

Brass = Cu/Zn Bronze = Sn/Cu

Metal Alloys

Interstitial Alloy: Interstices (holes) in closest packed metal structure are occupied by small atoms.

steel = iron + carbon

